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Abstract. An asymptotic high-frequency solution is presented for the problem of diffraction of acoustic waves
emanating from a ring source by a semi-infinite cylindrical pipe of certain wall thickness having different internal,
external and end surface impedances. Through the application of the Fourier-transform technique in conjunction
with the Mode Matching method, the diffraction problem is described by a modified Wiener—Hopf equation of the
second kind and then solved approximately. Various numerical results illustrating the effects of the parameters of
the problem on the diffraction phenomenon are presented.
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1. Introduction

The problem of scattering of acoustic waves by semi-infinite hollow cylinders has been ex-
tensively studied in the literature because of their use in modelling many actual engineering
problems of practical importance, such as the design of a loudspeaker and noise reduction
in architectural and experimental aerodynamics, in road transportation, in modern aircraft jet
and turbofan engines, etc.

The method which is standard for problem of this type isWiener—Hopf techniquig].
Levine and Schwinger [2] and Weinstein [3] were the first to apply this method to the study
of sound radiation from a semi-infinite rigid pipe. By use of a Green'’s function, they obtained
an integral equation for the velocity potentiaitégral-equation technigqyeand then solved
it exactly by applying the Wiener—Hopf technique, which is originally based on taking first
the Fourier transform of the integral equation to derive a functional equation in the spectral
domain and then solving it via the factorization procedure. Later, Rawlins [4] obtained the
exact solution for the problem of radiation of sound waves from a semi-infinite thin rigid
pipe with an internal acoustically absorbent lining for noise reduction studies in acoustic
waveguides. The lining is modelled by the acoustic impedance boundary condition. However,
modelling a pipe as infinitely thin is unrealistic for most problems and in practice each pipe
will have a certain wall thickness which will affect the diffraction phenomenon. The first stud-
ies taking this fact into consideration were done by Matsui [5] and Ando [6] for the problem of
diffraction of sound waves by an actual microphone system in the case where the semi-infinite
cylindrical tube is assumed to be perfectly rigid. According to the method adopted in these
works, the diffracted field is expanded into a Dini series (with unknown coefficients) in the
waveguide region, while a Fourier integral representation is used elsewhere. The boundary-
value problem is first reduced to a modified Wiener—Hopf equation of the second kind and
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then, after the application of the factorization and decomposition procedure, to the solution
of an infinite number of linear algebraic equations involving an infinite number of unknown
constants which can always be solved approximately.

In this work an asymptotic high-frequency solution is presented for the problem of diffrac-
tion of sound waves emanating from a ring source by a semi-infinite cylindrical pipe of certain
wall thickness having different internal, external and end surface impedances. This geometry
can be regarded as a more actual model of an acoustic waveguide for use in noise reduction or
loudspeaker design studies. The ring source provides the total field to have angular symmetry
which makes the problem simpler than the asymmetric case. Through the application of the
Fourier-transform technique, the related boundary-value problem can generally be reduced to
a pair of simultaneous modified Wiener—Hopf equations of the second kind. It is well known
that the crucial step in solving such a matrix Wiener—Hopf equation is the factorization of
the kernel matrix as the product of two nonsingular matrices whose entries are regular and
of algebraic growth in certain overlapping halves of the complex plane [7]. Except for a
very restricted class of matrices, no general method exists to accomplish the Wiener—Hopf
factorization of an arbitrary matrix; including the one related to the present problem. In this
work, an alternative formulation based on the Mode-Matching method in conjuntion with
the Fourier-transform technique will be adopted. This mixed formulation will yield a single
(scalar) Wiener—Hopf equation involving an infinite set of unknown constants satisfying an
infinite system of linear algebraic equations which are solved approximately. Some computa-
tional results illustrating the effects of the admittances and the wall thickness on the diffraction
phenomenon are presented.

In the analysis that follows the time dependence is assumed to & amd suppressed
throughout this work, where is the angular frequency.

2. Formulation of the problem

We consider the scalar wave diffraction by a cylindrical impedance pipe of certain wall thick-
ness occupying the spaeg < p < a1,z < O illuminated by a ring source located at
p =b > a;,z = ¢ > 0 (see Figure 1). Here, anda; are the inner and outer radii of
the pipe, respectively. We assume that the external supfacer,, z < 0, the internal surface
p = az,z < 0 and the surface, < p < a1, z = 0 of the cylinder are treated with infinitely
thin materials which are characterized by the constant and purely imaginary acoustic surface
impedance«,, Z, andZs, respectively.
For analysis purposes, it is convenient to express the total field as follows:

ui(p,z), p>>b
MZ()O’Z)a al<p<b

u(p,z) = (1)
uz(p,z), p<ay,z>0

M4(IO’ Z)a P <az,z< Oa

whereuy, u,, uz andug, which satisfy the Helmholtz equation, are to be determined with the
aid of the following boundary and continuity conditions:
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Figure 1 The Geometry of the Diffraction Problem. Figure 2 The Complexx-plane.
ui(b, z) = uz(b, z), z € (—00,00), (2a)
d d
—u1(b,2) — —uz(b,z) =8(z —c¢), z € (—00,00), (2b)
ap ap
. d
(lkm + %> uz(ar,z) =0, z<0, (2c)
. d
(lknz - —) uglaz,z) =0, z<0, (2d)
ap

. d
(zkng + £> uz(p,0 =0, ax<p <a, (2e)
MS(pv 0) = I/l4(,0, O)v p < dy, (Zf)
d ad
_M3(p’ O) = _M4(p’ 0)7 P < az, (Zg)
0z 0z
uz(ai, z) = uz(a1, z), z>0, (2h)
d d .
—uz(a1,z) = —us(a,z), z>0, (2i)
ap ap

In (2c—e)n;,i = 1,2, 3 are the specific surface admittances and the free-space wave
number which is temporarily assumed to have a positive imaginary part. To ensure a unigue
solution we also have to impose edge conditions on theorima,, z = 0

up =const z— 40, (39)
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3
—u, =0 Y3, z— +0. (3b)
ap

In the regionp > b, u1(p, z) satisfies the Helmholtz equation

19 B 92
[;% (P@) + 922 + k2:| ui(p,z) =0, 4)

wherez € (—oo, 00). Multiplying (4) by €% with « being the Fourier-transform variable and
integrating the resulting equation with respect tivom —oo to co, we obtain

E% (p%) + (k% — az)] F(p,a) =0, (5a)
where

F(p,a) = foo ui(p, z) €% dz. (5b)
The solution of (5a) satisfying the radiation condition for b reads

F(p.a) = A(e)Hy" (Kp) (6a)
with

K () = Vk? — a2 (6b)
and

HY = J, +iY, (6¢)

being the Hankel function of the first kind anth order.A(«) in (6a) is a spectral coefficient
to be determined. The square-root functikite) is defined in the complex-plane cut as
shown in Figure 2 such th& (0) = k.

In the regiona; < p < b, ux(p, z) satisfies the Helmholtz equation in the range
(—00, 00). In a similar way the solution can be given as

G*(p, ) + G (p, ) = B(@)Jo(Kp) + C()Yo(Kp) (7a)

with G*(p, «) being defined by

+o00
G*(p,a) = + fo us(p, 2) € dz. (7h)

In (7a), B(x) and C(«) are spectral coefficients to be determined. In accordance with the
analytical properties of Fourier integrals, the functi@®s(p, o) andG*(p, ) are regular
functions of« in the half-planegm (o) < Jm(k) andJym(«) > Jm(—k), respectively. The
spectral coefficientsl («), B(«x) and C(«) are related to each other by the definition of the
ring source given in (2a, b), the Fourier transform of which give

A(@)HP (Kb) = B(a) Jo(Kb) + C(a)Yo(Kb) (8a)
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joac

A(@)H{P(Kb) = B(a) J1(Kb) + C(a)Y1(Kb) — X" (8b)
o

In the Fourier-transform domain (2c) takes the form

iknG™ (a1, @) + G~ (a1, @) =0, 9)
where the dot specifies the derivative with respegi.titilizing (9) in (7a), we get

B(a)M(a) + C(@)N(a) = WH(a) (10a)
with W (a), M(a) andN () being defined by

W) = ikmG* (a1, @) + G (ay, @), (10b)

M(a) = ikniJo(Kay) — K Ji(Kay), (10c)

N(Ol) = ik771Yo(Kal) — KYl(Kal). (10d)
On the other hand, the elimination Af«) between (8a) and (8b) gives

C(@) —iB(a) = —”—Zngl)(Kb) gac (11)
From (10a) and (11B(«) andC () can be solved uniquely as

B(e)L(a) = W(a) + ”—:N(a)Hg”(Kb) g, (12a)

C(@)L(a) = iW" (o) — ”—:M(a)Hg”(Kb) g (12b)
with L(«) being defined by

L(a) = ikmH" (Kay) — KH" (Kay). (12c)

In the regionp < ay, uz(p, z) satisfies the Helmholtz equation in (4) in the range O.
Hence, multiplying the Helmholtz equation by#®€and integrating the resulting equation with
respect ta from 0 to oo, we obtain

1d d
[—— (p—> + Kz(a)] H*(p,a) = f(p) +ag(p) (13a)
pdo \" dp
with
B
f(p) = gus(p, 0), g(p) = —iuz(p, 0). (13b, ¢)

H*(p, a), which is defined by

o0

H*(p, o) = /O us(p, 2) €4 d, (14)
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is a function regular in the upper half of the compleplane (Jm(a) > Jm(—k)). The
particular solution of (13a) which is boundedemat= 0 and satisfying the impedance boundary
condition onp = a; can be obtained by the Green'’s function technique. The Green’s function
related to (13a) satisfies the Helmholtz equation

[Ei (pi> + Kz(a)] G(p,t,a) =0, p#t, p,te(0a) (15a)
pdo \" dp

with the following conditions

6(0,7,) bounded (15b)
Gt +0,t,a) =60t —0,t,) (15¢)
ig(r +0, ¢, ) — ig(r -0t ) = } (15d)
ap ap t
. d
(zknl + —> G(a1, t,a) =0. (15e)
ap

The solution is

1
9»(,0,l,0()=mQ(,0,t,a) (16&)
with
7 | Jo(Kp)IM(a)Yo(Kt) — N(a)Jo(K1)], O0<p <t
2 | Jo(KD)[M(a)Yo(Kp) — N(@)Jo(Kp)], t<p <ar.
Note that we have
ikniO(as, t, @) + Q(ar, t, ) = 0. (16¢)
The solution of (13a) can now be written as
1 a“
H (p,a) = —— {D(a)Jo(Kp) +/ Lf(#) +ag®)]0, p, a)tdt} . (7)
M(a) 0

In (17) D(«) is a spectral coefficient to be determined, whilandg are given by (13b, c).
Combining (2h) and (2i), we may write

9 9
iknuz(ar, z) + %uz(al, z) = iknius(ay, z) + %MS(CIL z2), z>0. (18a)

The Fourier transform of (18a) is

ikmH* (a1, @) + HY (a1, @) = W (). (18b)
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Substituting (17) and its derivative with respeciptin (18b), D(«) can be solved to give
D(a) = W (). (29)

Inserting now (19) into (17) we get

ai

1
H(p,a) = ——— [W+(Ot)Jo(K,0) +/O Lf () +ag(n)]O(t, p,a)fdf] : (20)

M(a)
The left-hand side of (20) is regular in the upper half of the complgtane. This implies that
the right-hand side should also be regular in the upper half-plane. However, the regularity of
the right-hand side im () > Jm(—k) is violated by the presence of simple poles occurring
at the zeros oM («), namely atx = «,,, m = 1, 2, ... satisfying

Yin

2
) . Jm(ay,) = Im(k). (21)
ax

inlka1J0(yn1) - ynljl(yn1) = 07 Uy = k% — <

We can eliminate these poles by imposing that their residues are zero. This gives

W (o) = %N(am@.fé(ym)[l — (mkay /Y)W fn + emgn] (22a)
or

W (@) = o)L = (71kas/ V)L fo + g (22b)
with

H } ~ @R mIL —Z(nlkal/ym)zl /o [;5; } & (ya%) e (22¢)

Consider now the waveguide regipn< ay, z < 0 where the total field can be expressed
in terms of Dini series as follows:

us(p,z) = Z cnJo (En%) g e (23a)
n=1
with
inZkaZJO(‘i:n) + Sn-]l(sn) = O, n= 1, 2, e (23b)
and
£ 2
B = [i2 (—2) L am(B) > Imk). (230)

From the continuity relations (2f) and (13c) we get

us(p,0) =ig(p), p <ao. (24)
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Using (2e), (2f) and (2g) we may write

9 ikns + L) ua(p,0), p<ap
(ikﬁs + —> uz(p,0) = { ( ) (25)
0z ap < p < aj.
Hence we get
(iknz + L) ua(p,0), p <az
f(p) —knsg(p) = [ " (26)
0, ax<p<a.

Owing to (22c),f (p) andg(p) can be expanded into Dini series as follows:

= J 'm— | - 27
L’(p)} Z{gm} O(y al) @)

m=1

Substituting (23a) and (27) in (24) and (26), we obtain

s p = P
l;gmjo (Vma_l> = ;ano <5n£> ) P <az (28)

and
ad —i Cn(/gn - k773)Jo Snaﬂ P p < az
m=1

0, a»<p<a.

Let us multiply both sides of (28) by Jo (& a%) and integrate fronp = 0to p = a, to get

2 =
Ccp = —g,, =12 ... 30a
‘ Jo(&o) vy Z ﬂng (303)

m=1

with v,, @, and®,,, being defined by

ve = 1— (n2kaz/&)? (30b)
SZm = inZkaZJO(ymClZ/al) + (VmaZ/al) Jl(ymClZ/al) (3OC)
ﬁm( = (VmaZ/al)z - "i:lz (30d)

Similarly, the multiplication of both sides of (29) ky/y <y@ a%) and its integration froqp = 0
to p = a yields

o0

2
. [ a2 Q (IBn - k773) JO(Sn)
ko = —2i [ £2
J a8t l ( ) veJE(ye) ; Pen

e, £=12, ... (31a)
ai
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with v, being defined by
ve =1~ (mikay/ye)*. (31b)
Consider the continuity relation (2h) which reads, in the Fourier-transform domain
H' (a1, ) = G (a1, @). (32)

Taking into account (7a), (12a,b) and (17), we obtain

ap W@  bHP(Kb)
R0 @t T = e O
2M( )/ [f@®) 4+ ag(t)]Jo(Kt)t dt (33a)
with
V(a) = miM(a)L(a). (33b)

Substituting (27) in (33a) and evaluating the resulting integral, we obtain the following Modi-
fied Wiener—Hopf Equation (MWHE) of the second kind valid in the siip(—k) < Jm(a) <
Jm (k)

_Hg- W@ b Hg(KD)
? @)+~ T T3 L)
00 J .
al (ZO(—V)[fm + agm]- (34)
m=1

3. Approximate solution of the MWHE
The first step in solving the MWHE is to factorize the kernel functidfa) given in (33b) as
V(e) =V (@)V (). (35)

Here V*(a) and V~(«) denote certain functions which are regular and free of zeros in the
half-planesim (a) > Jm(—k) andym(ax) < Jm(k), respectively.

The functionM («) is an entire function with zerag = +w,,, m = 1,2, ... given in (21)
having the asymptotic behaviour [8, Sections 15.25, 18.33]

m oo (1) 20 Ihm o (1Y @9

ag m

As a consequence we have the infinite product representation

00 2
M@ =MO ] <1 - %) (37)

m=1 m
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obtained by use of Hadamard'’s factorization theorem [9, Section 8.24]. The factorization of
M (@) is now obvious with the result

M* (o) = [M(0)]Y? exp{i% [1 — € +log (kﬂ) + ﬂ”

ag 2

X ﬁ (1+ O%) exp(ﬁ?) (38a)

m=1

in which the exponential functions have been deliberately chosen so as to make the infinite
product convergent and to produce a simple asymptotic behaviaur¢&) as|o| — oo. In
(38a) € is the Euler’'s constant given by = 0-57721566.. The asymptotics oM " («) is

readily found by the procedure from [10, Sections 1-4(l11)]

] 2
M™(«) ~ Constant a”“EXp{% log (%)} as |a| — oo (38b)

in the upper half-plane.
Application of the factorization procedure from [10, Sections 3-10](®@) yields

] K | K
Lt(a) = [L(0)]Y? exp{—lkzal + & n(a) log (a +lk (a)) + q(a)} (39a)
with the asymptotic behaviour
Lt (a) ~ ozl/“exp{—% log (%)} as |a| — oo (39b)

in the upper half-plane. Herg(«) is given by

@ — _/C’o [1—1 x% — (nikay)? }
70 =7 0 mx [(inkairJo(x) — xJ1(x))? + (in1karYo(x) — xY1(x))?]

aaq
log|1+ ———=] d 39
x l0g ( G =22 xz) X (39c)

and it has been assumed thiatr) has no zeros in the complexplane. On multiplying the
results forM* («) and L™ («), we get

Vi) = [mwi(inkJo(kay) — kJi(kay))(inik HS" (kay) — kH" (kay)) 1“2

X ex ;2 1-¢C+lo 2 +'n ;kay
pln g kaq 12 12

y EXp{ali(a) log (a + ikK(a)) N q(a)}

X ﬁ <1+ ;—m> exp(%) . (40a)
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V(@) =V (—a) (40b)
with the asymptotic behaviour
Vi) ~ (a)Y? as |a| — o0 (40c)

in their respective regions of regularity.
The multiplication of both sides of (34) by~ («) and decomposition of the resulting
equation into the Wiener—Hopf form leads to

W+ (a) 15 _ Hél)(Kb) g a1 Jo(ym) V()
Vi)  2mi2 /,c+ YO e 2~ 24, (@ oy T emén]
L g Lbf - H"(Kb) €
=2V @6 @, a)+§§/ 2D g
1 a1 [fm + Tgm] dr
———;Jo(ym)f VO e oy (41)

The position of the integration lines™ and.L~ are depicted in Figure 2. The left- and right-
hand sides of (41) are regular in the low@n(a) < Jm(k)) and the uppe(Im(x) >
Jm(—k)) halves of the complex-plane, respectively. Therefore, by the analytical contin-
uation principle, they define an entire function which can be shown to be zero. From (41),
equating the left-hand side to zero, we have

W) _ a1 o~ Jo(ym) V7 (@)
V+(a) =@+ ?mX_:l 20, (a +am)[fm — W &m] (42a)

with I («) being defined by

(42b)

1 __ H(Kb) €™
I(“)__%E/ﬁv O -

The integral given by (42b) can be evaluated by means of the steepest-descent method. The
substitutiont = —k cos¢ in (42b) enables us to write

HV(kbsing) e ikecoss
L(—kcost) (a + kcost)

15 .
I(a) = 5 Z/V (—k cosg) ksing dg, (43)

wherer is the new integration line depicted in Figure 3.
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Im&
0 ”:90 R
: z
r\ :
Figure 3 The Complex-plane. Figure 4 Total Field at a PoinP (p, z).

Using the asymptotic expansion of Hankel’s functions for large arguments and making the
following substitutions

b—ai=rg sin@o, ¢ = rgCOSHy
in (43), we get

Vaib / V= (—k cost)
47'[ r

sin f e—i kro coS&+6p)
I(a) =—

. dg. A4
N1+ Siné (o + k cos§) d (44)
During the deformation of the integration lineonto the steepest-descent path (SDP) through

the saddle poing, = = — 6y, we may cross the pole occurringf@t= arccog—a/k) whose
residue contribution is

b HP(Kb)

Le@) = -3 V‘(a)w € H[Im(k coshy — )], (45a)

where# denotes the unit-step function. The contribution from the SBP,

«/alb

sin f e; kro coS&+6p)
V= (—kcos .
A7 /SDP ( S)171+sm§ (¢ + k cosg)

Ii(a) = —

de (45b)

can be obtained by evaluation of (45b) through the saddle-point formula. Indéed,-asoo,
we have

@3/4 Jaib  sinp  V~(kcosty) ekro

I ~ - .
a(@) V27 2 n1+SinGy (o — kcoshy) krg

(45c)
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Sol(«) can be given as
I () = Les(ar) + 1(c). (45d)

Substitutinge = a1, ap, ... in (42a) and using (22b), we have the following equations for
f-andg,

JO(Vr)Vr
V()

[fr + gl

JO(Vm) v+ (ain) _
_—I( ,)—l—; 2, (ar—i—am)[fm Amgml, r=212 ... (46)

Replacing (30a) in (31a), we may expressn terms ofg, as

as B, —
r = k r 4 m m 47
f s <al> Vr Jo (Vr Z § Z Up ﬁmn ﬁrn ( )

m=1
Substituting (47) in (46) we get infinitely many equations in infinite number of unknowns
which yield the constants,, r = 1, 2, ... as follows:

JO(yr)(O{r + kn3)vr > _ 1 _
|: 2V+(O(r) + Cr(ar)] 8r + Zl Cm(Olr)gm = a_lI(O(r), r = 1, 2, . (48a)
mr
with
JO(Vm)V+(am)(kn3 - am) ﬁn - k’)3
Cm (Olr) 40lm (Olr T Olm) <_> m Z v, mn
2Q . V()R

{ V+(ar)‘10(yr)l9rn YX_]:_ o (o + as)JO(Vs)Vsﬁsn } ‘ (48b)

In the numerical implementations the infinite sums given in (46) and (47) are truncated after
the Nth term and the infinite system of equations in (48a,b) is solved approximately.

4. Asymptotic evaluation of the total field

The total field in the regiop > b can be obtained from the inverse Fourier transform of
F(p, o). From (6a) we get

1 [ |
wi(p.2) = 5 f A HP (K p) €7 dar. (49)

Using (8a), (12a,b), (42a) and (45a,c,d), we may write the total field as the sum of the follow-
ing four terms:

ui(p,z) =u'(p,z) +u'(p, 2) + ua1(p, 2) + ua2(p, z) (50a)
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where
. b ™ .
u(p,2) =4 / Jo(Kb)HSP (Kp) €79 da, (50b)
1 J -
b o M(Ol) @ i ~
r — —H K ac _ -1
u(p,z) 2] . Tw o (Kb)e*{H[IJm(kcoshy — a)] — 1}
x Hy" (K p) €7 da, (50c)
@3/4 Jaib  sin6, B
ug1(p,z) = N n1+sin90V (k costp)
jkro 0 + (D )
<& / Vi) Ho (Kp)  cia: gy, (50d)
krog J_oo L(a) (ax — kcCoSHp)
a1~ Jovm) 4
udZ(;O’ Z) — 87'[’; N Vv (am)[fm amgm]
o0 =+ H(l) K )
/ V(@) Hy (KP) e g, (50€)
—o L) (a+ )

Using the asymptotic expansion of Hankel's functions for large arguments, we observe that
the asymptotic evaluation of the integrals in (50b,e) through the saddle-point technique yields

for the total field

ur(p, z) = u' (ra, 02; r3, 63) + u’ (r1, 61) + uq1(r1, 61) + ua2(r1, 61), (51a)
where

) ei37r/4 /kb eikr2 eikrg

“(ro, 02: 13, 03) = —1i , 51b
u' (ra, 02; r3, 63) N |:kr2 lkl’g] (51b)

o ab siné, 1 . e
"(r1,01) = V21 €342 Jkay————— H'P (kb singy) e k¢ 0
u' (ry, 61) b4 2 a1n1+Sln91 o ( 1)
jkry
x{H[IJm(k(COSHy + €c0sH,))] — 1} , (51¢)

ki"]_

kai/kb €0 sin@y/2) sin6.1/2) _
,01) = — . —— V™ (k costy) V™ (k cosh
ua1(rs. 1) Amk?  krg n1+ Sinfgy ny + Sinfy ( )V ( v

x {sec(el ; 90) F <2krl co (91 ; 90))

61+ 6 61+ 6 ghr1
+sec( 2% & 2kry O | = + , (51d)
2 2 krq
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jkry

sing e
Ug(ry, 1) = /27 €%/ 1\/ — 1V~ (kcoshy)

771 + sin 9 krq
— Jovm) V()
m m8m 51e
Xﬂ; @ (@, —kcosoy Jm ~ cmsn] (51e)
with
F(z) = —Ziﬁe‘iZ/ e dr (51f)
N

begin the well-known Fresnel integral and 64, r,, 6, andrs, 03 appearing in (51a—e) are the
spherical coordinates defined by

0 —ay =r1Sinfy, Z = r1 COSH,

o — b =r,Sinby, Z — ¢ = rpC0OSH,
and

o+ b =rzsinbs, Z — ¢ = r3C0SH3

as shown in Figure 4.

In the expression of the total field given in (51a) the first term at the right-hand side
corresponds to the incident wave emanating from the ring source. The second term is the
reflected field from the lateral surfape= a1, z < 0 of the cylinder. The reflected field appears
only in the regionr — 6, < 61 < 7 as shown in Figure 4. The third and the fourth terms
together account for the total diffracted field. Equation (51f) is the approximate expression of
the incident field at the rilp = a4, z = 0, askrg — oc.

5. Some special cases

In this section the results related to some special cases which are of theoretical as well as
practical importance will be discussed.
(i) m=n2=0, az <a.

Consider first the special case of a perfectly rigid pipe with a certain wall thickness and an
impedance end. For this special case we get

n=%=0, Vi = &n > 0, m=273,... (52)

Besides replacing, = n, = 0 in the formulations at every step, we must make the following
modifications: First of all, the termg and f; in (30a) and (31a) should be calculated sepa-
rately from the other terms, and f,, £ > 1. Multiplication of both sides of (28) and (29) by
p and its integration fronp = 0to p = a, andp = a4, respectively gives

a Ji(ymaz/a
=ig1+ i2— ! Z wgm (53&)
az m=2 mn
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ar 2
J1—knsgy = —ik (a_1> (1—n3)ca (53b)

Replacing (53b) in (53a), we can expressn terms ofg,, as

2 o J1 (i
fi=k [773 + (ﬁ) (1- 773)} g1+ 2 (@) A=y Y Dlmc2/a) (54)
ax

a
1 m=2 n

Finally, replacing (54) in (46), we have for= 1

v ([ () o2 (532) J e () oo

N
2
+) " Culk)gm = o 1® (55a)

m=2

with

2% Vi \? | (a2 J1(Ymaz/a1)
@O = v {1_< % ”(Z) o

‘] m + m
_ Jo(ym) V™ () 1+k773
2(k + am) am

N N

5 (@)4 itz o) g V" @y Iyscafan) o fu b
az Joz(ym) —2 o (k + ay) Jo(ys) Wun Vsn .

(55b)
n=1

(i) ni+n=0, a=a.
For this special case we get

Ay = ﬂma Ym = é:ma m = 1’ 2’ e

Therefore, after putting;z = 0 anda, = a; at every step, we see that (28) and (29) are
identically satisfied for

igm =Cm and fm = _icmﬂm-
This gives
fm = Um8m

implying u,2, = 0 in (51a). HenceD(6y, 61) given in (51g) corresponds to the ‘diffraction
coefficient’ related to the rinp = a;, z = 0 of the cylinder for this case.

(i) a=0.
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For the special case of a semi-infinite impedance rod, we set

¢, =0, n=12...

This yields
fn = angn
and
+ —
Cm(ar) _ JO(Vm)V (Ofm)(kns am)

Aoy (atr + o)
in the formulations. When; = n3 = 0, the solution of the WHE reduces to

n @ 00
2WH () b Hy’(Kb) ef“0+az Jo(¥m)

G (apa)= ————— — ——2 — > 8n
! a1K2(@)R(@) a1 KHM (Kay) @ —a2)®

m=1
with
R(x) = —miJi(Kay) HP (Kay),

which agrees with the solution of the WHE derived by D. S. Jones for the problem of diffrac-
tion by a semi-infinite rigid rod of circular cross-section [11].
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e s e
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Figure 5. Total diffracted field versus the truncationFigure 6. Total diffracted field versus the observation
numbern. angled, for different values ofip/a; .
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Figure 7. Total diffracted field versus the observation angjefor different values ofyq.

In order to show the influence of the values of the wall thickness and the surface im-
pedances on the diffraction phenomenon, some numerical results showing the variation of
the total diffracted field (20 log |u.|) with the observation angle are presented. In all the
graphical solutions that follows we use dimensionless coordinates anddake 1, kb =
10, kc = 6, andkr; = 10. In Figure 5 we show the variation of the total diffracted field
with the truncation numbe¥ at a fixed point. It is seen that the total diffracted field becomes
insensitive to the truncation numbarfor N > 5, as/a; = 0-50, ; = np = n3 = i0-5. The
reason of this rapid convergence is the very small contributian,oferm (a few percent) to
the total diffracted field. This fact is also in agreement with the numerical convergence tests
given in the papers of Rawlins [4] and Ando [6]. We require a smalléor increasing values
of ay/a; as expected. For the numerical examples that foldis chosen with this criterion
in mind.

Another interesting result is that the total diffracted field is insensitive to the variations of
the surface impedanc&s andZs, since they appear only in the, term. So it can be deduced
that the total diffracted field is affected merely by the variations in the wall thickngas
and the external surface impedarite Figure 6 shows the variation of the total diffracted field
with the observation angle, for various values of the wall thickregs,. As expected, the
total diffracted field increases regularly with increasing value of the wall thickness. This shows
the importance of the contribution of the wall thickness of a realistic pipe to the diffraction
phenomenon. Figure 7 shows the variation of the total diffracted field with the observation
angle, for various values of the exterior surface admittapGevhich is taken as positive
imaginary(n1 = iZ1, &1 > 0). The total diffracted field decreases with the increasing values
of £;. Figure 8 shows the variation of the total diffracted field with the observation angle, for
various values of the exterior surface admittangewhich is taken as negative imaginary
(n1 = —i&1, &1 > 0). The total diffracted field decreases with the increasing valuesg of
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Figure 8. Total diffracted field versus the observation argjefor different values ofjq.

6. Conclusions

In this work, an asymptotic high-frequency solution is presented for the problem of scalar
wave diffraction by a semi-infinite pipe of certain wall thickness having different internal,
external and end surface impedances, through application of the Wiener—Hopf technique. As
far as we know, no studies have been reported in the literature for the problem of diffraction
by cylindrical waveguides satisfying an external impedance boundary condition. Extension of
the problem to the case when the lateral surface admittancasdn, have positive real parts
(absorbent coating), requires that it should be verified beforehand that the funkftipns)

and Jo(&,¢) form completesystems on (X ¢ < 1, thus permitting expansions in Dini series

as in (23a) and (27). In our solution we also present the factorization of the kernel function
V() which is always required in problems concerning diffraction by semi-infinite or finite-
length cylindrical impedance pipes or rods. The problem can possibly by generalized to the
finite-length case. In that case, the solution of the modified Wiener—Hopf equation involves
branch-cut integrals with unknown integrands which have to be performed numerically, and
infinitely many constants satisfying infinite systems of linear algebraic equations.
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