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Abstract. An asymptotic high-frequency solution is presented for the problem of diffraction of acoustic waves
emanating from a ring source by a semi-infinite cylindrical pipe of certain wall thickness having different internal,
external and end surface impedances. Through the application of the Fourier-transform technique in conjunction
with the Mode Matching method, the diffraction problem is described by a modified Wiener–Hopf equation of the
second kind and then solved approximately. Various numerical results illustrating the effects of the parameters of
the problem on the diffraction phenomenon are presented.
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1. Introduction

The problem of scattering of acoustic waves by semi-infinite hollow cylinders has been ex-
tensively studied in the literature because of their use in modelling many actual engineering
problems of practical importance, such as the design of a loudspeaker and noise reduction
in architectural and experimental aerodynamics, in road transportation, in modern aircraft jet
and turbofan engines, etc.

The method which is standard for problem of this type is theWiener–Hopf technique[1].
Levine and Schwinger [2] and Weinstein [3] were the first to apply this method to the study
of sound radiation from a semi-infinite rigid pipe. By use of a Green’s function, they obtained
an integral equation for the velocity potential (integral-equation technique) and then solved
it exactly by applying the Wiener–Hopf technique, which is originally based on taking first
the Fourier transform of the integral equation to derive a functional equation in the spectral
domain and then solving it via the factorization procedure. Later, Rawlins [4] obtained the
exact solution for the problem of radiation of sound waves from a semi-infinite thin rigid
pipe with an internal acoustically absorbent lining for noise reduction studies in acoustic
waveguides. The lining is modelled by the acoustic impedance boundary condition. However,
modelling a pipe as infinitely thin is unrealistic for most problems and in practice each pipe
will have a certain wall thickness which will affect the diffraction phenomenon. The first stud-
ies taking this fact into consideration were done by Matsui [5] and Ando [6] for the problem of
diffraction of sound waves by an actual microphone system in the case where the semi-infinite
cylindrical tube is assumed to be perfectly rigid. According to the method adopted in these
works, the diffracted field is expanded into a Dini series (with unknown coefficients) in the
waveguide region, while a Fourier integral representation is used elsewhere. The boundary-
value problem is first reduced to a modified Wiener–Hopf equation of the second kind and
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then, after the application of the factorization and decomposition procedure, to the solution
of an infinite number of linear algebraic equations involving an infinite number of unknown
constants which can always be solved approximately.

In this work an asymptotic high-frequency solution is presented for the problem of diffrac-
tion of sound waves emanating from a ring source by a semi-infinite cylindrical pipe of certain
wall thickness having different internal, external and end surface impedances. This geometry
can be regarded as a more actual model of an acoustic waveguide for use in noise reduction or
loudspeaker design studies. The ring source provides the total field to have angular symmetry
which makes the problem simpler than the asymmetric case. Through the application of the
Fourier-transform technique, the related boundary-value problem can generally be reduced to
a pair of simultaneous modified Wiener–Hopf equations of the second kind. It is well known
that the crucial step in solving such a matrix Wiener–Hopf equation is the factorization of
the kernel matrix as the product of two nonsingular matrices whose entries are regular and
of algebraic growth in certain overlapping halves of the complex plane [7]. Except for a
very restricted class of matrices, no general method exists to accomplish the Wiener–Hopf
factorization of an arbitrary matrix; including the one related to the present problem. In this
work, an alternative formulation based on the Mode-Matching method in conjuntion with
the Fourier-transform technique will be adopted. This mixed formulation will yield a single
(scalar) Wiener–Hopf equation involving an infinite set of unknown constants satisfying an
infinite system of linear algebraic equations which are solved approximately. Some computa-
tional results illustrating the effects of the admittances and the wall thickness on the diffraction
phenomenon are presented.

In the analysis that follows the time dependence is assumed to be e−iωt and suppressed
throughout this work, whereω is the angular frequency.

2. Formulation of the problem

We consider the scalar wave diffraction by a cylindrical impedance pipe of certain wall thick-
ness occupying the spacea2 6 ρ 6 a1, z 6 0 illuminated by a ring source located at
ρ = b > a1, z = c > 0 (see Figure 1). Herea2 and a1 are the inner and outer radii of
the pipe, respectively. We assume that the external surfaceρ = a1, z < 0, the internal surface
ρ = a2, z < 0 and the surfacea2 < ρ < a1, z = 0 of the cylinder are treated with infinitely
thin materials which are characterized by the constant and purely imaginary acoustic surface
impedancesZ1, Z2 andZ3, respectively.

For analysis purposes, it is convenient to express the total field as follows:

u(ρ, z) =


u1(ρ, z), ρ > b

u2(ρ, z), a1 < ρ < b

u3(ρ, z), ρ < a1, z > 0

u4(ρ, z), ρ < a2, z < 0,

(1)

whereu1, u2, u3 andu4, which satisfy the Helmholtz equation, are to be determined with the
aid of the following boundary and continuity conditions:
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Figure 1. The Geometry of the Diffraction Problem. Figure 2. The Complexα-plane.

u1(b, z) = u2(b, z), z ∈ (−∞,∞), (2a)

∂

∂ρ
u1(b, z)− ∂

∂ρ
u2(b, z) = δ(z− c), z ∈ (−∞,∞), (2b)

(
ikη1 + ∂

∂ρ

)
u2(a1, z) = 0, z < 0, (2c)

(
ikη2 − ∂

∂ρ

)
u4(a2, z) = 0, z < 0, (2d)

(
ikη3 + ∂

∂z

)
u3(ρ, 0) = 0, a2 < ρ < a1, (2e)

u3(ρ, 0) = u4(ρ, 0), ρ < a2, (2f)

∂

∂z
u3(ρ, 0) = ∂

∂z
u4(ρ, 0), ρ < a2, (2g)

u2(a1, z) = u3(a1, z), z > 0, (2h)

∂

∂ρ
u2(a1, z) = ∂

∂ρ
u3(a1, z), z > 0. (2i)

In (2c–e)ηi, i = 1, 2, 3 are the specific surface admittances andk is the free-space wave
number which is temporarily assumed to have a positive imaginary part. To ensure a unique
solution we also have to impose edge conditions on the rimρ = a1, z = 0

u2 = const, z→+0, (3a)
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∂

∂ρ
u2 = O(z−1/3), z→+0. (3b)

In the regionρ > b, u1(ρ, z) satisfies the Helmholtz equation[
1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ ∂2

∂z2
+ k2

]
u1(ρ, z) = 0, (4)

wherez ∈ (−∞,∞). Multiplying (4) by eiαz with α being the Fourier-transform variable and
integrating the resulting equation with respect toz from−∞ to∞, we obtain[

1

ρ

d

dρ

(
ρ

d

dρ

)
+ (k2− α2)

]
F(ρ, α) = 0, (5a)

where

F(ρ, α) =
∫ ∞
−∞

u1(ρ, z) eiαz dz. (5b)

The solution of (5a) satisfying the radiation condition forρ > b reads

F(ρ, α) = A(α)H
(1)
0 (Kρ) (6a)

with

K(α) =
√

k2− α2 (6b)

and

H(1)
n = Jn + iYn (6c)

being the Hankel function of the first kind andnth order.A(α) in (6a) is a spectral coefficient
to be determined. The square-root functionK(α) is defined in the complexα-plane cut as
shown in Figure 2 such thatK(0) = k.

In the regiona1 < ρ < b, u2(ρ, z) satisfies the Helmholtz equation in the rangez ∈
(−∞,∞). In a similar way the solution can be given as

G+(ρ, α)+G−(ρ, α) = B(α)J0(Kρ)+ C(α)Y0(Kρ) (7a)

with G±(ρ, α) being defined by

G±(ρ, α) = ±
∫ ±∞

0
u2(ρ, z) eiαz dz. (7b)

In (7a), B(α) and C(α) are spectral coefficients to be determined. In accordance with the
analytical properties of Fourier integrals, the functionsG−(ρ, α) andG+(ρ, α) are regular
functions ofα in the half-planesJm(α) < Jm(k) andJm(α) > Jm(−k), respectively. The
spectral coefficientsA(α), B(α) andC(α) are related to each other by the definition of the
ring source given in (2a, b), the Fourier transform of which give

A(α)H
(1)
0 (Kb) = B(α)J0(Kb)+ C(α)Y0(Kb) (8a)
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A(α)H
(1)
1 (Kb) = B(α)J1(Kb)+ C(α)Y1(Kb)− eiαc

K(α)
. (8b)

In the Fourier-transform domain (2c) takes the form

ikη1G
−(a1, α)+ Ġ−(a1, α) = 0, (9)

where the dot specifies the derivative with respect toρ. Utilizing (9) in (7a), we get

B(α)M(α)+ C(α)N(α) = W+(α) (10a)

with W+(α),M(α) andN(α) being defined by

W+(α) = ikη1G
+(a1, α)+ Ġ+(a1, α), (10b)

M(α) = ikη1J0(Ka1)−KJ1(Ka1), (10c)

N(α) = ikη1Y0(Ka1)−KY1(Ka1). (10d)

On the other hand, the elimination ofA(α) between (8a) and (8b) gives

C(α)− iB(α) = −πb

2
H

(1)

0 (Kb) eiαc. (11)

From (10a) and (11)B(α) andC(α) can be solved uniquely as

B(α)L(α) = W+(α)+ πb

2
N(α)H

(1)

0 (Kb) eiαc, (12a)

C(α)L(α) = iW+(α)− πb

2
M(α)H

(1)
0 (Kb) eiαc (12b)

with L(α) being defined by

L(α) = ikη1H
(1)

0 (Ka1)−KH
(1)

1 (Ka1). (12c)

In the regionρ < a1, u3(ρ, z) satisfies the Helmholtz equation in (4) in the rangez > 0.
Hence, multiplying the Helmholtz equation by eiαz and integrating the resulting equation with
respect toz from 0 to∞, we obtain[

1

ρ

d

dρ

(
ρ

d

dρ

)
+K2(α)

]
H+(ρ, α) = f (ρ)+ αg(ρ) (13a)

with

f (ρ) = ∂

∂z
u3(ρ, 0), g(ρ) = −iu3(ρ, 0). (13b, c)

H+(ρ, α), which is defined by

H+(ρ, α) =
∫ ∞

0
u3(ρ, z) eiαz dz, (14)
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is a function regular in the upper half of the complexα-plane (Jm(α) > Jm(−k)). The
particular solution of (13a) which is bounded atρ = 0 and satisfying the impedance boundary
condition onρ = a1 can be obtained by the Green’s function technique. The Green’s function
related to (13a) satisfies the Helmholtz equation[

1

ρ

d

dρ

(
ρ

d

dρ

)
+K2(α)

]
G(ρ, t, α) = 0, ρ 6= t, ρ, t ∈ (0, a1) (15a)

with the following conditions

G(0, t, α) bounded (15b)

G(t + 0, t, α) = G(t − 0, t, α) (15c)

∂

∂ρ
G(t + 0, t, α)− ∂

∂ρ
G(t − 0, t, α) = 1

t
(15d)

(
ikη1 + ∂

∂ρ

)
G(a1, t, α) = 0. (15e)

The solution is

G(ρ, t, α) = 1

M(α)
Q(ρ, t, α) (16a)

with

Q(ρ, t, α) = π

2

{
J0(Kρ)[M(α)Y0(Kt)−N(α)J0(Kt)], 06 ρ 6 t

J0(Kt)[M(α)Y0(Kρ)−N(α)J0(Kρ)], t 6 ρ 6 a1.
(16b)

Note that we have

ikη1Q(a1, t, α)+ Q̇(a1, t, α) = 0. (16c)

The solution of (13a) can now be written as

H+(ρ, α) = 1

M(α)

{
D(α)J0(Kρ)+

∫ a1

0
[f (t)+ αg(t)]Q(t, ρ, α)t dt

}
. (17)

In (17) D(α) is a spectral coefficient to be determined, whilef andg are given by (13b, c).
Combining (2h) and (2i), we may write

ikη1u2(a1, z)+ ∂

∂ρ
u2(a1, z) = ikη1u3(a1, z)+ ∂

∂ρ
u3(a1, z), z > 0. (18a)

The Fourier transform of (18a) is

ikη1H
+(a1, α)+ Ḣ+(a1, α) = W+(α). (18b)
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Substituting (17) and its derivative with respect toρ in (18b),D(α) can be solved to give

D(α) = W+(α). (19)

Inserting now (19) into (17) we get

H+(ρ, α) = 1

M(α)

[
W+(α)J0(Kρ)+

∫ a1

0
[f (t)+ αg(t)]Q(t, ρ, α)t dt

]
. (20)

The left-hand side of (20) is regular in the upper half of the complexα-plane. This implies that
the right-hand side should also be regular in the upper half-plane. However, the regularity of
the right-hand side inJm(α) > Jm(−k) is violated by the presence of simple poles occurring
at the zeros ofM(α), namely atα = αm, m = 1, 2, . . . satisfying

iη1ka1J0(γm)− γmJ1(γm) = 0, αm =
√

k2−
(

γm

a1

)2

, Jm(αm) > Jm(k). (21)

We can eliminate these poles by imposing that their residues are zero. This gives

W+(αm) = π

2
N(αm)

a2
1

2
J 2

0 (γm)[1− (η1ka1/γm)2][fm + αmgm] (22a)

or

W+(αm) = a1

2
J0(γm)[1− (η1ka1/γm)2][fm + αmgm] (22b)

with[
fm

gm

]
= 2

a2
1J

2
0 (γm)[1− (η1ka1/γm)2]

∫ a1

0

[
f (t)

g(t)

]
J0

(
γm

t

a1

)
t dt. (22c)

Consider now the waveguide regionρ < a2, z < 0 where the total field can be expressed
in terms of Dini series as follows:

u4(ρ, z) =
∞∑

n=1

cnJ0

(
ξn

ρ

a2

)
e−iβnz (23a)

with

iη2ka2J0(ξn)+ ξnJ1(ξn) = 0, n = 1, 2, . . . (23b)

and

βn =
√

k2−
(

ξn

a2

)2

, Jm(βn) > Jm(k). (23c)

From the continuity relations (2f) and (13c) we get

u4(ρ, 0) = ig(ρ), ρ < a2. (24)
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Using (2e), (2f) and (2g) we may write(
ikη3 + ∂

∂z

)
u3(ρ, 0) =

{ (
ikη3 + ∂

∂z

)
u4(ρ, 0), ρ < a2

0, a2 < ρ < a1.
(25)

Hence we get

f (ρ)− kη3g(ρ) =
{ (

ikη3 + ∂
∂z

)
u4(ρ, 0), ρ < a2

0, a2 < ρ < a1.
(26)

Owing to (22c),f (ρ) andg(ρ) can be expanded into Dini series as follows:[
f (ρ)

g(ρ)

]
=
∞∑

m=1

[
fm

gm

]
J0

(
γm

ρ

a1

)
. (27)

Substituting (23a) and (27) in (24) and (26), we obtain

i

∞∑
m=1

gmJ0

(
γm

ρ

a1

)
=
∞∑

n=1

cnJ0

(
ξn

ρ

a2

)
, ρ < a2 (28)

and

∞∑
m=1

(fm − kη3gm)J0

(
γm

ρ

a1

)
=


−i

∞∑
n=1

cn(βn − kη3)J0

(
ξn

ρ

a2

)
, ρ < a2

0, a2 < ρ < a1.

(29)

Let us multiply both sides of (28) byρJ0

(
ξ`

ρ

a2

)
and integrate fromρ = 0 toρ = a2 to get

c` = 2i

J0(ξ`)v`

∞∑
m=1

�m

ϑm`

gm, ` = 1, 2, . . . (30a)

with v`,�m andϑm` being defined by

v` = 1− (η2ka2/ξ`)
2 (30b)

�m = iη2ka2J0(γma2/a1)+ (γma2/a1)J1(γma2/a1) (30c)

ϑm` = (γma2/a1)
2− ξ2

` . (30d)

Similarly, the multiplication of both sides of (29) byρJ0

(
γ`

ρ

a1

)
and its integration fromρ = 0

to ρ = a1 yields

f` − kη3g` = −2i

(
a2

a1

)2
�`

ν`J
2
0 (γ`)

∞∑
n=1

(βn − kη3)J0(ξn)

ϑ`n

cn, ` = 1, 2, . . . (31a)
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with ν` being defined by

ν` = 1− (η1ka1/γ`)
2. (31b)

Consider the continuity relation (2h) which reads, in the Fourier-transform domain

H+(a1, α) = G+(a1, α). (32)

Taking into account (7a), (12a,b) and (17), we obtain

−a1

2
G−(a1, α)+ W+(α)

V (α)
= −b

2

H
(1)

0 (Kb)

L(α)
eiαc

− 1

2M(α)

∫ a1

0
[f (t)+ αg(t)]J0(Kt)t dt (33a)

with

V (α) = πiM(α)L(α). (33b)

Substituting (27) in (33a) and evaluating the resulting integral, we obtain the following Modi-
fied Wiener–Hopf Equation (MWHE) of the second kind valid in the stripJm(−k) < Jm(α) <

Jm(k)

−a1

2
G−(a1, α)+ W+(α)

V (α)
= −b

2

H
(1)
0 (Kb)

L(α)
eiαc

+a1

2

∞∑
m=1

J0(γm)

(α2
m − α2)

[fm + αgm]. (34)

3. Approximate solution of the MWHE

The first step in solving the MWHE is to factorize the kernel functionV (α) given in (33b) as

V (α) = V +(α)V −(α). (35)

HereV +(α) andV −(α) denote certain functions which are regular and free of zeros in the
half-planesJm(α) > Jm(−k) andJm(α) < Jm(k), respectively.

The functionM(α) is an entire function with zerosα = ±αm,m = 1, 2, . . . given in (21)
having the asymptotic behaviour [8, Sections 15.25, 18.33]

αm = iγm

a1
+O

(
1

m

)
= (m− 3/4)πi

a1
+O

(
1

m

)
, m→∞ (36)

As a consequence we have the infinite product representation

M(α) = M(0)

∞∏
m=1

(
1− α2

α2
m

)
(37)
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obtained by use of Hadamard’s factorization theorem [9, Section 8.24]. The factorization of
M(α) is now obvious with the result

M+(α) = [M(0)]1/2 exp
{
i
αa1

π

[
1− C + log

(
2π

ka1

)
+ i

π

2

]}

×
∞∏

m=1

(
1+ α

αm

)
exp

(
iαa1

mπ

)
(38a)

in which the exponential functions have been deliberately chosen so as to make the infinite
product convergent and to produce a simple asymptotic behaviour ofM+(α) as|α| → ∞. In
(38a)C is the Euler’s constant given byC = 0·57721566. . . The asymptotics ofM+(α) is
readily found by the procedure from [10, Sections 1–4(III)]

M+(α) ∼ Constant· α1/4 exp

{
iαa1

π
log

(
2α

k

)}
as |α| → ∞ (38b)

in the upper half-plane.
Application of the factorization procedure from [10, Sections 3–10] toL(α) yields

L+(α) = [L(0)]1/2 exp

{
− ika1

2
+ a1K(α)

π
log

(
α + iK(α)

k

)
+ q(α)

}
(39a)

with the asymptotic behaviour

L+(α) ∼ α1/4 exp

{
− iαa1

π
log

(
2α

k

)}
as |α| → ∞ (39b)

in the upper half-plane. Here,q(α) is given by

q(α) = 1

π

∫ ∞
0

[
1− 2

πx

x2 − (η1ka1)
2

[(iη1ka1J0(x)− xJ1(x))2+ (iη1ka1Y0(x)− xY1(x))2]
]

× log

(
1+ αa1√

(ka2)2− x2

)
dx (39c)

and it has been assumed thatL(α) has no zeros in the complexα-plane. On multiplying the
results forM+(α) andL+(α), we get

V +(α) = [πi(iη1kJ0(ka1)− kJ1(ka1))(iη1kH
(1)
0 (ka1)− kH

(1)
1 (ka1))]1/2

×exp

{
i
αa1

π

[
1− C + log

(
2π

ka1

)
+ i

π

2

]
− i

ka1

2

}

×exp

{
a1K(α)

π
log

(
α + iK(α)

k

)
+ q(α)

}

×
∞∏

m=1

(
1+ α

αm

)
exp

(
iαa1

mπ

)
. (40a)
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V −(α) = V +(−α) (40b)

with the asymptotic behaviour

V ±(α) ∼ (±α)1/2 as |α| → ∞ (40c)

in their respective regions of regularity.
The multiplication of both sides of (34) byV −(α) and decomposition of the resulting

equation into the Wiener–Hopf form leads to

W+(α)

V +(α)
+ 1

2πi

b

2

∫
L+

V −(τ)
H

(1)
0 (Kb)

L(τ)

eiτc

(τ − α)
dτ − a1

2

∞∑
m=1

J0(γm)

2αm

V +(αm)

(α + αm)
[fm − αmgm]

= a1

2
V −(α)G−(a1, α)+ 1

2πi

b

2

∫
L−

V −(τ)
H

(1)
0 (Kb)

L(τ)

eiτc

(τ − α)
dτ

− 1

2πi

a1

2

∞∑
m=1

J0(γm)

∫
L−

V −(τ)
[fm + τgm]
(α2

m − τ2)

dτ

(τ − α)
. (41)

The position of the integration linesL+ andL− are depicted in Figure 2. The left- and right-
hand sides of (41) are regular in the lower(Jm(α) < Jm(k)) and the upper(Jm(α) >

Jm(−k)) halves of the complexα-plane, respectively. Therefore, by the analytical contin-
uation principle, they define an entire function which can be shown to be zero. From (41),
equating the left-hand side to zero, we have

W+(α)

V +(α)
= I (α)+ a1

2

∞∑
m=1

J0(γm)

2αm

V +(αm)

(α + αm)
[fm − αmgm] (42a)

with I (α) being defined by

I (α) = − 1

2πi

b

2

∫
L+

V −(τ)
H

(1)
0 (Kb)

L(τ)

eiτc

(τ − α)
dτ. (42b)

The integral given by (42b) can be evaluated by means of the steepest-descent method. The
substitutionτ = −k cosξ in (42b) enables us to write

I (α) = 1

2πi

b

2

∫
0

V −(−k cosξ)
H

(1)
0 (kb sinξ)

L(−k cosξ)

e−ikc cosξ

(α + k cosξ)
k sinξ dξ, (43)

where0 is the new integration line depicted in Figure 3.
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Figure 3. The Complexξ -plane. Figure 4. Total Field at a PointP(ρ, z).

Using the asymptotic expansion of Hankel’s functions for large arguments and making the
following substitutions

b− a1 = r0 sinθ0, c = r0 cosθ0

in (43), we get

I (α) = −
√

a1b

4π

∫
0

V −(−k cosξ)
sinξ

η1+ sinξ

e−ikr0 cos(ξ+θ0)

(α + k cosξ)
dξ. (44)

During the deformation of the integration line0 onto the steepest-descent path (SDP) through
the saddle pointξs = π − θ0, we may cross the pole occurring atξ = arccos(−α/k) whose
residue contribution is

Ires(α) = −b

2
V −(α)

H
(1)
0 (Kb)

L(α)
eiαcH[Jm(k cosθ0− α)], (45a)

whereH denotes the unit-step function. The contribution from the SDP,i.e.

Id(α) = −
√

a1b

4π

∫
SDP

V −(−k cosξ)
sinξ

η1+ sinξ

eikr0 cos(ξ+θ0)

(α + k cosξ)
dξ (45b)

can be obtained by evaluation of (45b) through the saddle-point formula. Indeed, askr0→∞,
we have

Id(α) ' ei3π/4

√
2π

√
a1b

2

sinθ0

η1+ sinθ0

V −(k cosθ0)

(α − k cosθ0)

eikr0

kr0
. (45c)
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SoI (α) can be given as

I (α) = Ires(α)+ Id(α). (45d)

Substitutingα = α1, α2, . . . in (42a) and using (22b), we have the following equations for
fr andgr

J0(γr)νr

V +(αr)
[fr + αrgr ]

= 2

a1
I (αr)+

∞∑
m=1

J0(γm)

2αm

V +(αm)

(αr + αm)
[fm − αmgm], r = 1, 2, . . . (46)

Replacing (30a) in (31a), we may expressfr in terms ofgr as

fr = kη3gr + 4

(
a2

a1

)2
�r

νrJ
2
0 (γr)

∞∑
m=1

gm�m

∞∑
n=1

βn − kη3

vnϑmnϑrn

. (47)

Substituting (47) in (46) we get infinitely many equations in infinite number of unknowns
which yield the constantsgr, r = 1, 2, . . . as follows:[

J0(γr)(αr + kη3)νr

2V +(αr)
+ Cr(αr)

]
gr +

∞∑
m=1
m6=r

Cm(αr)gm = 1

a1
I (αr), r = 1, 2, . . . (48a)

with

Cm(αr) = J0(γm)V +(αm)(kη3− αm)

4αm(αr + αm)
+
(

a2

a1

)2

�m

∞∑
n=1

βn − kη3

vnϑmn

×
{

2�r

V +(αr)J0(γr)ϑrn

−
∞∑

s=1

V +(αs)�s

αs(αr + αs)J0(γs)νsϑsn

}
. (48b)

In the numerical implementations the infinite sums given in (46) and (47) are truncated after
theN th term and the infinite system of equations in (48a,b) is solved approximately.

4. Asymptotic evaluation of the total field

The total field in the regionρ > b can be obtained from the inverse Fourier transform of
F(ρ, α). From (6a) we get

u1(ρ, z) = 1

2π

∫ ∞
−∞

A(α)H
(1)
0 (Kρ) e−iαz dα. (49)

Using (8a), (12a,b), (42a) and (45a,c,d), we may write the total field as the sum of the follow-
ing four terms:

u1(ρ, z) = ui(ρ, z)+ ur(ρ, z)+ ud1(ρ, z)+ ud2(ρ, z) (50a)
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where

ui(ρ, z) = b

4i

∫ ∞
−∞

J0(Kb)H
(1)

0 (Kρ) e−iα(z−c) dα, (50b)

ur(ρ, z) = b

4i

∫ ∞
−∞

M(α)

L(α)
H

(1)

0 (Kb) eiαc{H[Jm(k cosθ0− α)] − 1}

×H
(1)
0 (Kρ) e−iαz dα, (50c)

ud1(ρ, z) = ei3π/4

√
2π

√
a1b

4π

sinθ0

η1 + sinθ0
V −(k cosθ0)

× eikr0

kr0

∫ ∞
−∞

V +(α)

L(α)

H
(1)

0 (Kρ)

(α − k cosθ0)
e−iαz dα, (50d)

ud2(ρ, z) = a1

8π

∞∑
m=1

J0(γm)

αm

V +(αm)[fm − αmgm]

×
∫ ∞
−∞

V +(α)

L(α)

H
(1)
0 (Kρ)

(α + αm)
e−iαz dα. (50e)

Using the asymptotic expansion of Hankel’s functions for large arguments, we observe that
the asymptotic evaluation of the integrals in (50b,e) through the saddle-point technique yields
for the total field

u1(ρ, z) = ui(r2, θ2; r3, θ3)+ ur(r1, θ1)+ ud1(r1, θ1)+ ud2(r1, θ1), (51a)

where

ui(r2, θ2; r3, θ3) = ei3π/4

√
2π

√
kb

2

[
eikr2

kr2
− i

eikr3

kr3

]
, (51b)

ur(r1, θ1) =
√

2π ei3π/4b

4

√
ka1

sinθ1

η1 + sinθ1
H

(1)

0 (kb sinθ1) e−ikc cosθ1

×{H[Jm(k(cosθ0+ cosθ1))] − 1} eikr1

kr1
, (51c)

ud1(r1, θ1) = −ka1

√
kb

4πk2

eikr0

kr0

sin(θ0/2)

η1+ sinθ0

sin(θ1/2)

η1+ sinθ1
V −(k cosθ0)V

−(k cosθ1)

×
{

sec

(
θ1− θ0

2

)
F

(
2kr1 cos2

(
θ1− θ0

2

))

+ sec
(

θ1+ θ0

2

)
F

(
2kr1 cos2

(
θ1+ θ0

2

))}
eikr1

kr1
, (51d)
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ud2(r1, θ1) =
√

2π e−i3π/4 a1

8π

√
ka1

sinθ1

η1+ sinθ1
V −(k cosθ1)

eikr1

kr1

×
∞∑

m=1

J0(γm)

αm

V +(αm)

(αm − k cosθ1)
[fm − αmgm] (51e)

with

F (z) = −2i
√

z e−iz

∫ ∞
√

z

e−it2
dt (51f)

begin the well-known Fresnel integral andr1, θ1, r2, θ2 andr3, θ3 appearing in (51a–e) are the
spherical coordinates defined by

ρ − a1 = r1 sinθ1, z = r1 cosθ1

ρ − b = r2 sinθ2, z− c = r2 cosθ2

and

ρ + b = r3 sinθ3, z− c = r3 cosθ3

as shown in Figure 4.
In the expression of the total field given in (51a) the first term at the right-hand side

corresponds to the incident wave emanating from the ring source. The second term is the
reflected field from the lateral surfaceρ = a1, z < 0 of the cylinder. The reflected field appears
only in the regionπ − θ0 < θ1 < π as shown in Figure 4. The third and the fourth terms
together account for the total diffracted field. Equation (51f) is the approximate expression of
the incident field at the rimρ = a1, z = 0, askr0→∞.

5. Some special cases

In this section the results related to some special cases which are of theoretical as well as
practical importance will be discussed.

(i) η1 = η2 = 0, a2 < a1.

Consider first the special case of a perfectly rigid pipe with a certain wall thickness and an
impedance end. For this special case we get

γ1 = ξ1 = 0, γm = ξm > 0, m = 2, 3, . . . (52)

Besides replacingη1 = η2 = 0 in the formulations at every step, we must make the following
modifications: First of all, the termsc1 andf1 in (30a) and (31a) should be calculated sepa-
rately from the other termsc` andf`, ` > 1. Multiplication of both sides of (28) and (29) by
ρ and its integration fromρ = 0 toρ = a2 andρ = a1, respectively gives

c1 = ig1+ i2
a1

a2

∞∑
m=2

J1(γma2/a1)

γm

gm (53a)
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f1− kη3g1 = −ik

(
a2

a1

)2

(1− η3)c1. (53b)

Replacing (53b) in (53a), we can expressf1 in terms ofgm as

f1 = k

[
η3+

(
a2

a1

)2

(1− η3)

]
g1+ 2k

(
a2

a1

)
(1− η3)

∞∑
m=2

J1(γma2/a1)

γm

gm. (54)

Finally, replacing (54) in (46), we have forr = 1

k

V +(k)

{[
1+

(
V +(k)

2k

)2
]
+
[

1−
(

V +(k)

2k

)2
][

η3 +
(

a2

a1

)2

(1− η3)

]}
g1

+
N∑

m=2

Cm(k)gm = 2

a1
I (k) (55a)

with

Cm(k) = 2k

V +(k)

[
1−

(
V +(k)

2k

)2
](

a2

a1

)2

(1− η3)
J1(γma2/a1)

γm

−J0(γm)V +(αm)

2(k + αm)

(
1+ kη3

αm

)

−2

(
a2

a1

)4
γmJ1(γma2/a1)

J 2
0 (γm)

N∑
s=2

V +(α2)γsJ1(γsa2/a1)

αs(k + αs)J0(γs)

N∑
n=1

βn − kη3

ϑmnϑsn

. (55b)

(ii) η1+ η2 = 0, a2 = a1.

For this special case we get

αm = βm, γm = ξm, m = 1, 2, . . .

Therefore, after puttingη3 = 0 anda2 = a1 at every step, we see that (28) and (29) are
identically satisfied for

igm = cm and fm = −icmβm.

This gives

fm = αmgm

implying ud2 = 0 in (51a). Hence,D(θ0, θ1) given in (51g) corresponds to the ‘diffraction
coefficient’ related to the rimρ = a1, z = 0 of the cylinder for this case.

(iii) a 2 = 0.
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For the special case of a semi-infinite impedance rod, we set

cn ≡ 0, n = 1, 2, . . .

This yields

fn = kη3gn

and

Cm(αr) = J0(γm)V +(αm)(kη3− αm)

4αm(αr + αm)

in the formulations. Whenη1 = η3 = 0, the solution of the WHE reduces to

G−(a1, α) = 2W+(α)

a1K2(α)R(α)
− b

a1

H
(1)
0 (Kb)

KH
(1)
1 (Ka1)

eiαc + α

∞∑
m=1

J0(γm)

(α2− α2
m)

gm

with

R(α) = −πiJ1(Ka1)H
(1)
1 (Ka1),

which agrees with the solution of the WHE derived by D. S. Jones for the problem of diffrac-
tion by a semi-infinite rigid rod of circular cross-section [11].

Figure 5. Total diffracted field versus the truncation
numberN .

Figure 6. Total diffracted field versus the observation
angleθ1, for different values ofa2/a1.

164948.tex; 4/09/1996; 7:10; p.17



350 Alinur Büyükaksoy and Burak Polat

Figure 7. Total diffracted field versus the observation angleθ1, for different values ofη1.

In order to show the influence of the values of the wall thickness and the surface im-
pedances on the diffraction phenomenon, some numerical results showing the variation of
the total diffracted field (20 log10 |ud |) with the observation angle are presented. In all the
graphical solutions that follows we use dimensionless coordinates and takeka1 = 1, kb =
10, kc = 6, andkr1 = 10. In Figure 5 we show the variation of the total diffracted field
with the truncation numberN at a fixed point. It is seen that the total diffracted field becomes
insensitive to the truncation numberN for N > 5, a2/a1 = 0·50, η1 = η2 = η3 = i0·5. The
reason of this rapid convergence is the very small contribution ofud2 term (a few percent) to
the total diffracted field. This fact is also in agreement with the numerical convergence tests
given in the papers of Rawlins [4] and Ando [6]. We require a smallerN for increasing values
of a2/a1 as expected. For the numerical examples that followN is chosen with this criterion
in mind.

Another interesting result is that the total diffracted field is insensitive to the variations of
the surface impedancesZ2 andZ3, since they appear only in theud2 term. So it can be deduced
that the total diffracted field is affected merely by the variations in the wall thicknessa2/a1

and the external surface impedanceZ1. Figure 6 shows the variation of the total diffracted field
with the observation angle, for various values of the wall thicknessa2/a1. As expected, the
total diffracted field increases regularly with increasing value of the wall thickness. This shows
the importance of the contribution of the wall thickness of a realistic pipe to the diffraction
phenomenon. Figure 7 shows the variation of the total diffracted field with the observation
angle, for various values of the exterior surface admittanceη1, which is taken as positive
imaginary(η1 = iζ1, ζ1 > 0). The total diffracted field decreases with the increasing values
of ζ1. Figure 8 shows the variation of the total diffracted field with the observation angle, for
various values of the exterior surface admittanceη1, which is taken as negative imaginary
(η1 = −iζ1, ζ1 > 0). The total diffracted field decreases with the increasing values ofζ1.
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Figure 8. Total diffracted field versus the observation angleθ1, for different values ofη1.

6. Conclusions

In this work, an asymptotic high-frequency solution is presented for the problem of scalar
wave diffraction by a semi-infinite pipe of certain wall thickness having different internal,
external and end surface impedances, through application of the Wiener–Hopf technique. As
far as we know, no studies have been reported in the literature for the problem of diffraction
by cylindrical waveguides satisfying an external impedance boundary condition. Extension of
the problem to the case when the lateral surface admittancesη1 andη2 have positive real parts
(absorbent coating), requires that it should be verified beforehand that the functionsJ0(γmt)

andJ0(ξnt) form completesystems on 06 t 6 1, thus permitting expansions in Dini series
as in (23a) and (27). In our solution we also present the factorization of the kernel function
V (α) which is always required in problems concerning diffraction by semi-infinite or finite-
length cylindrical impedance pipes or rods. The problem can possibly by generalized to the
finite-length case. In that case, the solution of the modified Wiener–Hopf equation involves
branch-cut integrals with unknown integrands which have to be performed numerically, and
infinitely many constants satisfying infinite systems of linear algebraic equations.
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